**integral**of

**(csc**^4(

**x**))_(

**cot**^2(

**x**)) - Symbolab.pdf from MATH 224 at University of the Fraser Valley. 4/11/22, 8:58 PM

**integral**of

**(csc**^4(

**x**)/(

**cot**^2(

**x**) - Symbolab Solution 4 ∫. The

**integration**of

**cot**inverse

**x**or arccot

**x**is

**x c o t**− 1

**x**+ 1 2 l o g | 1 +

**x**2 | + C Where C is the

**integration**constant. i.e. ∫

**c o t**− 1

**x**=

**x c o t**− 1

**x**- 1 2 l o g ... Using a similar process with a substitution of `u=

**csc x**+

**cot x**` and multiplying top and bottom by `

**csc x**+

**cot x**`,.

**Integral**of Trigonometric Functions: If we know an object’s instantaneous velocity at a given time, a logical issue arises: can we calculate the object’s location at any given time?There are various practical & theoretical instances or scenarios involving the

**integration**process. The expansion of

**integral**calculus results from attempting to solve the problem of finding a.

integralof(csc(x)cot(x))integrationof cosecx orcosec xand examples based on it. Let’s begin –Integrationof Cosecx orCosec x. Theintegrationofcosec xis log |cosec x–cot x| + C or \(log |tan {x\over 2}|\) + C.. where C is theintegrationconstant.integrationofcotinversexor arccotxisx c o t− 1x+ 1 2 l o g | 1 +x2 | + C. Where C is theintegrationconstant. i.e. ∫c o t− 1x=x c o t− 1x– 1 2 l o g | 1 +x2 | + C.integralofcosec xcanbe determined by substitution method. Now we will multiply and divide the integrand with (cosec x-cot x). ∫cosec xdx = ∫cosec x· (cosec x-cot x) / (cosec x-cot x) dx = ∫ (cosec2x -cosec x cot x) / (cosec x-cot x) dx. Let us considercosec x-cot x= u. Then (-cosec x cot x+ cosec2x.integrationofcosecxorcosecxand examples based on it. Let's begin -IntegrationofCosecxorCosecx. Theintegrationofcosecxis log |cosecx-cotx| + C or \(log |tan {x\over 2}|\) + C.. where C is theintegrationconstant.